QUASI-STEADY EVAPORATION OF A DROP
WITH INTERNAL HEAT RELEASE

F. G. Volkov and A. M. Golovin

We consider the problem of evaporation or growth of a drop with uniformly distributed internal heat
sources, taking into account heat exchange with the surrounding medium. We assume that the Reynolds
number R=ug/v and the Peclet numbers Pp=uo/D, P =ua/y (ais the radius of the drop, u is the velocity of
relative motion, v, D, and y are the kinematic viscosity, diffusion coefficient, and thermal diffusivity of
the vapor-gas medium) are small enough for the distributions of vapor content and temperature to be
spherically symmetrical. The Maxwell-Langmuir formula for the rate of diffusion evaporation [1] is ex~
tended to the case where internal heat sources are present and energy transfer occurs in the radiation-
absorbing vapor-gas medium. The radiation mean free path significantly exceeds the drop radius. We
determine the variation of the radius with time.

1. Diffusion Equation and Evaporation Rate. The surface of a drop with r=a(t) divides the whole
space into two regions —an inner one and an outer one. All the quantities relating to the inner region are
denoted by symbols with a dash,and all those relating to the outer region have no dash. Quantities relating
to the interface have the subscript ¢, those relating to the liquid or vapor have the subscript 1, and those
to the gas have the subscript 2. Overall quantities have no subscript. For instance, the total number of
molecules in unit volume is n=n;+n,. Let m be the mass of the molecule, pthe density, and v the radial
component of the velocity of the medium. Then

01 = myhy, Py = Mgiy, O = P; + Pas pv = pv + Ppvp & (1.1)

The continuity equations have the form
d 2 d 2
(‘37 + 7) piy =0, (7,3—,' + ‘;) pw2==0 . (1.2)

For the inner region n;n,' and, hence, p'=p;'. In addition, assuming that p'v'>>pv we can ignore
the motion of the liquid inside the drop.

Accordingto Chapman and Enskog's theory [2], we can write the diffusion equation for a binary mixture
at constant pressure in the absence of external forces and with thermal diffusion ignored:

n:Dy d ny

—_——— (1.3)

ning dr n

vy —vp=—

Using the boundary condition for r=aft), v,=& (@ is the velocity of the phase interface) we obtain the
following expression for the vapor flux density on the drop surface:

d . d
), (e=) (1.4)

I =Pq (Zim—a) = _( nms dr o
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Thus, to calculate the velocity of the phase interface, equal to
oL (PlrﬂDo _fl_"_l)a, .5

we need to solve the diffusion equation.
It follows from the continuity Eqs. (1.2) that
Prvy 1 Pave = (P10 vig T Pagd) @/ 1% (1.6)
Then, eliminating v, from (1.8) and (1.86) we obtain |

a? pen?Dy d m (1.7)

— I ) — —
PP1== (PyoP1q - Peq®) T nn, dr n

If we substitute (1.7) in the first of Eqs. (1.2) and neglect the terms containing the small parameter
o/p', the diffusion equation takes the form

4 2\ [epentDy d m g (gD d m )1 _ (1.8)
dar r pne  dr n pr? mny dr m o jglT " ° °

Let the vapor density at infinity be o, and on the drop surface be equal to the saturated vapor density
pgat surface temperature T, Assuming that Ipa - Dool<<pa we can confine ourselves in Eq. (1.8) to terms
of the first order of smallness in the parameter (o; = po)/pw. n addition, since Eq. (1.8) was obtained
by neglect of thermal and pressure diffusion effects, n in this equation can be assumed to be independent of
T3

(%4.%)%%:0. 1.9)

The solution of this equation enables us to calculate the vapor flux density on the drop surface,

D /d /
= (@l =5 .10

The saturated vapor density p,is a known function of temperature. In the case of a small tempera-
ture difference this function can be approximated by a linear relationship

Pz = Pseo [1 +B(T, —To0) I Ty} (1.11)

The temperature difference is determined from the solution of the heat problem.

2. Energy Equation. We assume that energy transfer from the drop to the gas is due to radiation,
diffusion, and heat conduction.

Since, according to the conditions of the problem, the radiation mean free path significantly exceeds
the drop radius we can assume that radiation has no effect on the temperature distribution in the vicinity of
the drop. :

It is obvious that the flux of radiant energy in this vicinity is
S, =5 (T h— T, a?|riochesT 3T, —To)at/r? , (2.1)

where ¢ is the Stefan-Boltzmann constant and £ is the effective emissivity of a drop surrounded by vapor.

The energy flux transferred by diffusion due to the difference in enthalpies of the diffusing substances
is, as is known [2], )

S =%y kT (myvy - nyvy — nv) (2.2)

where k is the Boltzmann constant.

Using Eqs. (1.1) and (1.3) we can convert (2.2) to the form

SkT ('"" —1>D %p% . (2.3)

D T 2my \ my

430



Substituting the solution of Eq. (1.9) in (2.3), we obtain

5kT [(m a
.SD:—2—m~l—<7;—-i>D(pa—pw);g . {2.4)

The energy flux trangferred by heat conduction of a vapor-gas mixture with thermal conductivity
is

S,=—ndl/dre 2.5)

The equation for energy transfer in the vapor-gas mixture at constant pressure, with the terms due
to the mean mass flux and internal friction neglected, has the form

4 2
(7;+7>(ST+SD+SK)=O. (2.6)

To solve this equation we need to know S, — the total energy flux on the phase interface — which can
be found from a solution of the internal problem.

The energy transfer equation for r<aghas the form
d 2\  dT
(;+7)%’—d;‘+q=0, 2.7

where ¢ is the intensity of the internal heat sources per unit volume of drop.
. Since we assume that the radius of the drop significantly exceeds the mean free path of the gas mole-
cules we can ignore the temperature discontinuity near the surface {1]. For a given drop surface tempera-
ture Ty,and if T = < whenr=0,we can easily obtain a solution of Eq. (2.7)

T — T, = (ga® [ 6n’) (1 — 12/ a?)» (2.8)
from which it follows that the heat flux per unit area of drop surface due to internal heat sources is

—w! (AT [ dr)y =Yy qa - (2.9)

The energy flux transferred by radiation, diffusion, and heat conduction in the vapor-gas medium is
given for r=aby the Eq. (2.9) with the energy flux due to the phase transition subtracted,

Sa = 1/3‘1‘1 - L]' K} (2 A 0)

where L is the specific heat of vaporization.

It follows from Eq. (2.6) and boundary condition (2.10) that

ar  qa? et Ye{pg— Py
._M—d—I;ZST——/LSSTOOs(Ta——TOO)W*————;Z—‘*
5T ]
P © (M 4\,
=L e () (2.11)

Since the difference in temperatures on the drop surface and at infinity is assumed to be relatively
small, then » and D can be considered constant and, in addition, p can be replaced by o, The solution
of Eq. (2.11), which describes the temperature distribution in the vapor-gas medium, has the form

T (P — Poo) @
e

3 2 .
(T T = — hosT 2 (T — To) 5 — (2.12)

Thus, the difference between the drop surface temperature and the temperature of the medium at
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infinity is

qa® — 3¢ (0 —Pgy)
Tq—Te= TB(x+ daesT %) ° (2.13)

3. Variation of Drop Radius with Time. It follows from (1.11) and (2.13) that

(4086T (2 + %) (P00 — Poo) + BYPscotd?/ 3T,
b0 — P e e . (3.1)

Thus, we can calculate the vapor flux density on the drop surface and obtain an equation for the varia-
tion of drop radius with time,

. oD q8%/3T%0 — ¥ (Pgeo ~~ Poo)/Tw]
aq =— — W [Psoo — P + Bpsoo PR 4&651'003 + BYPsoo / Too . (3 -2)

The solution of this equation is very laborious and, hence, it is better to consider only special cases.

In the initial stage of evaporation of a sufficiently large drop and also in the case where the vapor
density at infinity is the same as the saturated vapor density, the evaporation of the drop conforms to the
following law:

a PsooPB9D 5.3)
a — 3pap'T, (- dassT 3+ Brpse, [ T'oo) *
Then
a/ao—Aln(a/ao)zl—t/'ro 3
A+ BYPsoo / Ten 12p2p"agEST o}
=7 ThageT B =T oD (3.4)

As the drop evaporates, the effect of internal heat release and radiative transfer from the drop sur-
face decreases. For sufficiently large times the evaporation will be given by the formula

. pD ( BYPsoo / Too )
aa=-— {(Pseo™ Poo? |1 — % B1Ppg Tog) (3.5)
The drop radius if pge and p, are constant varies with time in the following way:
@/ap=1—t/7,
Too = 66?20’ (1 +B1Pso / #T0) / 20D (Pyop — Pec) : (3.6)

If the vapor density is negligibly small in comparison with the gas density and heat transfer by radia-
tion and diffusion is small in comparison with the heat flux due to the phase transition, then (3.6) becomes
the same as Mason's formula [3].

In the case where there are no internal heat sources and energy transfer is due solely to radiation in
a transparent medium and heat conduction,Eq. (3.2) should become the same as the equation in [4]. In [4],
however, the corresponding formula was given in an obviously distorted form.

If the drop radius is large in comparison with the radiation mean free path the approximation of ra-
diant heat conduction is applicable in the whole space occupied by the vapor-gas medium. This case can
be obtained from (3.2) by putting & =0, ®g=np+ng'

1/598% — Y (Pyo0 — Poo) ] .

. pD
26 == o [Psoo — Pop + BPseo %L oo + BYPseo .
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Whence it follows that

(@] ag)? = exp (— ¢ / 13) — (v1 /%) [1 — exp (— ¢ / )}
Ty = 3top’peT o, (L 4 BYPyeo / %g) / 20050 B9D
To = ag%'p2 (1 ++ BYPyon / o) / 20 (Peeo — Poo) D« (3.8)

Evaporation and growth of the drop occur in a time of the order of 747,/(74 +7).

Tn the case of supersaturation (p,>0g0) the growth and evaporation of the drop cease, as (3.5) shows,
when the limiting radius

@ = [3u, T, (Pop — Psoo) /BET™ 3.9

is attained. The limiting radius can be found from the general formula (3. 2)

@ = (8867 * / BPseod) [P — Poo F+ V (Pego — Poo)® T (Paco — Peo) Peoe?BY / 12825277 (3.10)

which becomes Eq. (3.9) when & =0,

The authors thank V. G. Levich for discussion of the results of this work.
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